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A Tale of Two Arrows
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Two time arrows for scattering processes have been proposed in rigged Hilbert space
quantum mechanics. One, due to Arno Bohm, involves preparations and registrations in
laboratory operations and results in two semigroups oriented in the forward direction of
time. The other, employed by the Brussels–Austin group, is more general, involving exci-
tations and de-excitations of systems, and apparently results in two semigroups oriented
in opposite directions of time. The relationship between these two arrows is discussed.
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1. TWO TIME ARROWS

In the standard formulation of nonrelativistic quantum mechanics, the time
evolution of systems is governed by a one-parameter group of unitary operators

U (t) = e−i Ht (1)

on a Hilbert space (HS) (von Neumann, 1955/1932), where H represents the
Hamiltonian and Planck’s constant has been set to one. Any evolution governed
by (1) is time-reversal invariant2 and irreversibility3 usually enters in because of
an extrinsic act of measurement or other interaction with an environment (Zeh,
1999). This approach, however, does not allow for intrinsic forms of irreversibil-
ity, where irreversible behavior originates in the dynamics of a physical system
without explicit reference to an environment (Atmanspacher and Bishop, 2002).
Such irreversible behavior cannot be appropriately modeled nor can appropriate
initial conditions for such irreversible processes be formulated rigorously in HS.
For these, among other reasons (Bishop, in press; Bohnet al., 1997), theories
of rigged Hilbert space (RHS) quantum mechanics—a generalization of the HS

1 Department of Philosophy, Logic and Scientific Method, London School of Economics, Houghton
Street, London WC2A 2AE, United Kingdom; e-mail: r.c.bishop@lse.ac.uk.

2 Time-reversal invariance means that ifφ(t) is a solution of the quantum mechanical equations of
motion, then so isφ(−t).

3 A process isreversibleif the temporal succession of its statesφ1, φ2, . . . , φn can occur in the opposite
order andirreversibleotherwise.
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version—were developed (Antoniou and Prigogine, 1993; Bohnet al., 1997). An
RHS, or Gel’fand triplet (Gel’fand and Shilov, 1967; Gel’fand and Vilenkin, 1964),
is the tirple of spaces

φ ⊂ H ⊂ 8×, (2)

whereH is a HS with the standard norm topology,τH, 8 is a vector space with
a topology,τ8, stronger thanτH, and8× is the dual space of continuous linear
functionals on8.

In the context of scattering theory, two intrinsic arrows of time have been
proposed within RHS quantum mechanics. One, due to Bohm (Bohmet al., 1997;
Bohm and Gadella, 1989), involves preparations and registrations in laboratory
operations, resulting in semigroups oriented in the forward direction of time. The
key intuition behind this arrow is that no observable properties of a state can be
measured unless the state has first been prepared. Prepared in-states are taken to be
elementsφ ∈ 8− and observables (so-called out-states of postinteraction particles)
are taken to be elementsψ ∈ 8+ (Decaying states, Gamow vectors, are elements
of 8×±.) This leads to a distinction between prepared states and observables, each
described by a separate RHS:

8− ⊂ H ⊂ 8×−, (3a)

8+ ⊂ H ⊂ 8×+, (3b)

where8− is the Hardy space of the lower complex energy half-plane intersected
with the Schwartz class functions and8+ is the Hardy space of the upper complex
energy half-plane intersected with the Schwartz class functions. Some elements
of the generalized eigenstates in8×− and8×+ correspond to exponentially growing
and decaying states respectively (Bohnet al., 1997; Bohn and Wickramasekara,
1997). The semigroups governing these states are4

〈φ|U×|Z∗R〉 = e−i ERte
0
2 t 〈φ|Z∗R〉 t ≤ 0, t : −∞→ 0, (4a)

〈φ|U×|ZR〉 = e−i ERte−
0
2 t 〈ψ |ZR〉 t ≥ 0, t : 0→∞, (4b)

whereER represents the total resonance energy,0 represents the resonance width,
ZR represents the pole atER− i 02 , Z∗R represents the pole atER+ i 02 , |Z∗R〉 ∈ 8∗−
represents a growing Gamow vector, and|ZR〉 ∈ 8×+ represents a decaying Gamow
vector. Thet < 0 semigroup is identified as future-directed along with|Z∗R as a
forming/growing state. Thet > 0 semigroup is identified as future-directed along
with |ZR〉 as a decaying state.5

4 When the group operatorU is extended to8×, continuity requirements force the extended oper-
ators to be semigroups defined only on the temporal half-domains (Bohnet al., 1997; Bohn and
Wickramasekara, 1997).

5 Note that the eigenvectors plus the semigroup property are insufficient to determine the temporal
direction of evolution. These identifications involve further physical considerations.



P1: GRA

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473605 November 20, 2003 17:18 Style file version May 30th, 2002

A Tale of Two Arrows 2373

The other time arrow, originally proposed by George (1971) and employed
by the Brussels–Austin group, is more general involving excitations and de-
excitations of systems, resulting in semigroups apparently oriented in oppo-
site directions of time. In their discussion of scattering and resonance phenom-
ena, Antoniou and Prigogine (1993) also apply the RHS framework, using the
Hardy class functions as a natural function space for their analysis. Antoniou and
Prigogine adopt the following time arrow: excitations are interpreted as events
taking place beforet = 0 whereas de-excitations are interpreted as events taking
place aftert = 0. This time arrow leads to a natural splitting of the RHS: ex-
citations (e.g., formation of unstable states) are considered as past-oriented and
associated withφ+ ∈ 8×+ in the upper half-plane, while de-excitations (e.g. decay
of unstable states) are considered as future-oriented and associated withφ− ∈ 8×−
in the lower half-plane.6 The semigroups governing decaying states as identified
by the Brussels–Austin group are

〈φ+|U×|Z∗R〉 = ei ERte
0
2 t 〈φ+|Z∗R〉 t < 0, t : −∞← 0 (5a)

〈φ−|U×|ZR〉 = e−i ERte−
0
2 t 〈φ−|ZR〉 t > 0, t : 0←∞. (5b)

The Brussels–Austin Group identifies thet < 0 semigroup as evolving states into
the past along with|Z∗R〉 as decaying states, and thet > 0 semigroup as evolving
states into the future along with|ZR〉 as decaying states.

2. TIME-REVERSED STATES AND OBSERVABLES

Following Wigner (1964), Bohm and coworkers have applied the time-
reversal operator,R(t), from the extended spacetime group to the states (4) for
elastic scattering (Bohm, 1995; Bohm and Wickramasekara, 1997). The extended
group contains four representations, the first leaving the underlying vector space
unchanged (Wigner, 1964). This is the typical case discussed in quantum me-
chanics. The other three representations, however, exhibit a doubling of the vec-
tor spaces. To track this space doubling, let the indexr = 0, 1 label the origi-
nal vector space and its double, respectively. Then, applying the transformation
properties ofR : 8r=0,×

± → 8
r=1,×
∓ (Bohm, 1995; Bohm and Wickramasekara,

1997), and identifyingr = 0 with the normal scattering experiment andr = 1
with the time-reversed situation,U×(t)〈φ, r = 0|Z∗R, r = 0〉 ∈ 8r=0,×

− , a growing
Gamow vector representing a preparable state fort ≤ 0, is transformed underR

6 Note that the roles of the upper and lower Hardy class function spaces are reversed with respect to
Bohm’s approach. This has only mathematical import. The differences in phase factors between (4)
and (5) are due to the fact that in (4), states evolve in the Schr¨odinger picture while observables evolve
in the Heisenberg picture, whereas in (5), only states evolve.
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Table I. Properties of the Bohm/Gadella Gamow Vectors UnderR(t)

Growing 〈φ, r = 0|Z∗R, r = 0〉 〈ψ, r = 1|ZR, r = 1〉
vectors t ≤ 0, t : −∞→ 0 t ≥ 0, t : 0←∞

Decaying 〈ψ, r = 0|ZR, r = 0〉 〈φ, r = 1|Z∗R, r = 1〉
vectors t ≥ 0, t : 0→∞ t ≤ 0, t : −∞← 0

into U×(−t)〈ψ, r = 1|ZR, r = 1〉 ∈ 8r=1,×
+ , where

ei ERte−
0
2 t 〈ψ, r = 1|ZR, r = 1〉 (6)

is restricted to the time domaint ≥ 0 by continuity requirements. In the case of
|Z∗R, r = 0〉, time runs from−∞ to 0; in contrast, for|ZR, r = 1〉, time runs from
∞ to 0, meaning that it represents a Gamow vector that grows ast decreases. Simi-
larly, U×(t)〈ψ, r = 0|ZR, r = 0〉 ∈ 8r=0,×

+ , a decaying Gamow vector represent-
ing observables fort ≥ 0, is transformed underR into U×(−t)〈φ, r = 1|Z∗R, r =
1〉 ∈ 8r=1,×

− , where

ei ERte
0
2 t 〈φ, r = 1|Z∗R, r = 1〉 (7)

is restricted to the time domaint ≤ 0 by continuity requirements. In the case of
|ZR, r = 0〉, time runs from 0 to∞; in contrast, for|Z∗R, r = 1〉, time runs from
0 to−∞, meaning that it represents a Gamow vector that decays as−t increases.
These results are summarized in Table I.

Using the transformation rules as appropriate, the temporal evolution of the
time-reversed vectors in the Brussels–Austin approach can be determined. How-
ever, notice that the eigenvectors in (5) are identified with decaying states. It can
be easily seen that (5b) is the time-reversal of (5a) underR, but the labelr as-
sociated with vector space doubling remains to be identified. If we assume that
the preparation/registration arrow is a special case of the excitation/de-excitation
arrow (Bishop, in press), then (5a) can be identified with ther = 1 and (5b) with
ther = 0 regimes respectively.

What remains is to examine the eigenvectors representing growing states in
the Brussels–Austin approach. To each de-excitation in (5) there is a corresponding
excitation represented by an eigenvector in the opposite temporal half-plane. For
ther = 0 regime, a growing eigenvector of the form

ei ERte
0
2 t 〈φ+, r = 0|Z∗R, r = 0〉 (8)

corresponds to eigenstate (5b), where (8) is restricted to the time domaint < 0 by
continuity requirements. This state is represented by a Gamow vector that grows
as−t decreases. Similarly, for ther = 1 regime, a growing eigenstate of the form

e−i ERte−
0
2 t 〈φ−, r = 1|ZR, r = 1〉 (9)



P1: GRA

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473605 November 20, 2003 17:18 Style file version May 30th, 2002

A Tale of Two Arrows 2375

Table II. Properties of the Brussels–Austin Gamow Vectors UnderR(t)

Growing 〈φ+, r = 0|Z∗R, r = 0〉 〈φ−, r = 1|ZR, r = 1〉
vectors t < 0, t : −∞→ 0 t > 0, t : 0←∞

Decaying 〈φ−, r = 0|ZR, r = 0〉 〈φ+, r = 1|Z∗R, r = 1〉
vectors t > 0, t : 0→∞ t < 0, t : −∞← 0

corresponds to eigenvector (5a), where (9) is restricted to the time domaint > 0 by
continuity requirements. This state is represented by a Gamow vector that grows
ast decreases. These results are summarized in Table II.

The Bohm and Brussels–Austin groups, then, were working with the same
eigenvectors and semigroups in their analysis of scattering. Equations (5a) and (5b)
are time-reversed images of each other and, when paired with their corresponding
growing vectors, are easily related to those of Bohm and coworkers, which is not
immediately apparent when comparing (4) and (5).

3. THE POSSIBILITY OF TIME-REVERSED STATES

Lee (1981) has discussed the formation of time-reversed quantum states for
a µ̄-meson at rest with its spinsµ in the updirection, decaying as

µ̄→ e− + ν̄e+ νµ, (10)

where the electron, electron antineutrino, andµ neutrino are emitted with helici-
ties−1/2, 1/2, and−1/2 respectively. Producing a final state with ¯µ at rest and a
final spins′µ = −sµ is not generally possible, requiring the momentum and spin
of all three leptons be simultaneously reversed in all possible directions while
maintaining the appropriate phase relations among their wave amplitudes. The
latter assumes the creation of three perfectly coherent incoming spherical waves
in the midst of the many degrees of freedom involved. Producing such a state
in laboratory situations (preparation/registration arrow) is clearly impossible due
to the precision required to produce such coherent incoming spherical waves, as
well as the control over the environment it entails. For the more general case
(excitation/de-excitation arrow), it is not clear that time-reversed growing states
associated with ther = 1 regime can be ruled out so easily. Though highly im-
probable, perhaps some kinds of rare events can produce the kinds of time-reversed
processes meeting such stringent requirements.

There is a related question as to why we live in a universe where the over-
whelming proportion of processes are in ther = 0 regime (Bohn, 1995). This
would be the case if the initial explosion of the big bang singularity was a process
of type r = 0. All subsequent processes would then typically be of typer = 0
with the possible exception of exceedingly rare processes producing a typer = 1
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event. However, the sheer preponderance ofr = 0 processes implies an incredibly
high entropy barrier that suchr = 1 processes must overcome.

However, it does appear that ther = 1 regime is problematic. Under the reg-
istration/preparation arrow, observables are now represented by growing eigen-
vectors whereas states are represented by decaying eigenvectors. Under the
excitation/de-excitation arrow, if one follows what the transformation rules sug-
gest, de-excitations are represented bygrowingeigenvectors whereas excitations
are represented bydecayingeigenvectors. These associations are clearly not as
natural as those in ther = 0 regime, perhaps suggesting some as yet undiscov-
ered problems with Wigner’s fourth representation. He does issue a warning that
applying the extended spacetime group to unstable particles may be problematic
because such particles cannot be considered as belonging to an irreducible unitary
representation. But the Bohm group work utilizes nonunitary representations of
semigroups. Rigorous work carrying out the CPT extensions of the semigroup
representations has yet to be carried out (this is needed to prove that results such
as vector space doubling for the group representations carry over in the semigroup
case).

If there turns out to be a serious problem with this representation (e.g., a
problematic unexamined assumption) such that it must be discarded, them time-
reversed states would disappear from RHS quantum mechanics in the context of
resonance phenomena as unphysical, leaving a purely time-asymmetric theory.
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